P=(59x-0.4x^2)-(5x+15)

Simple and best practice solution for P=(59x-0.4x^2)-(5x+15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=(59x-0.4x^2)-(5x+15) equation:



=(59P-0.4P^2)-(5P+15)
We move all terms to the left:
-((59P-0.4P^2)-(5P+15))=0
We calculate terms in parentheses: -((59P-0.4P^2)-(5P+15)), so:
(59P-0.4P^2)-(5P+15)
We get rid of parentheses
-0.4P^2+59P-5P-15
We add all the numbers together, and all the variables
-0.4P^2+54P-15
Back to the equation:
-(-0.4P^2+54P-15)
We get rid of parentheses
0.4P^2-54P+15=0
a = 0.4; b = -54; c = +15;
Δ = b2-4ac
Δ = -542-4·0.4·15
Δ = 2892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2892}=\sqrt{4*723}=\sqrt{4}*\sqrt{723}=2\sqrt{723}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{723}}{2*0.4}=\frac{54-2\sqrt{723}}{0.8} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{723}}{2*0.4}=\frac{54+2\sqrt{723}}{0.8} $

See similar equations:

| 2/8+(3/4)=w/5 | | 3x=-6x+63 | | 0.10x+0.05(10-x)=0.10(0) | | 1+1p+5+1p=2 | | 14.3=n+4.2 | | 1x(2+3)=5x | | 4(4x)=96 | | 9y-15=5y+9 | | 2x(1+9)=4x | | W^2=12z-11 | | 24+t=42 | | 9x/10=9/5 | | 7(x-4)-8=20 | | 3/6x-7/12-(3/4x-13/6)=0 | | 9x=3=66 | | 2x^+18=0 | | Y=-5x^2+26x-5 | | (D^3+D^2-4D-4)y=0 | | -6-4x=-5x | | 12-8x=-10x-6 | | x+1;2=3/4 | | 45x+0.5=172 | | Y-4y=12 | | 20-5x+15x=5x | | 8(4-2d)=4(3-5d)=4d | | 8a-a+4=12 | | 3n= −36 | | X-7=2x-11 | | 5z-60=27 | | 0=-4.9t^2+2.95t+1.2 | | 4/5x+7/5=3/10 | | (1/3)x=126 |

Equations solver categories